
6

IS&T’s 1999 PICS Conference
Overview of JPEG2000

Christos Chrysafis, David Taubman and Alex Drukarev
Hewlett Packard Laboratories

1501 Page Mill Road, Bldg 3U-3, Palo Alto California 94304-112
ge
s

d
ion
-

ub-

an

m-

ks

i.e.
ant
ep-
ose
 in

any

vel
de-
e
he

er-
cal
H
tal
re

both

ich
hi
rs
or
oe
sa
un
 E
ctl

loc
an
it
ty
n
e
s
ve
h

n o
s

 to
 t

nt
n
di
) s

am
e

we
99
t-
m

o
od
in
tio
d
din
ra
t i
 o
Introduction

In this paper we will describe the coding algorithm, wh
forms the basis for the verification model 3.0A, parts of t
document were taken from {D. Taubman 1998}. As a fi
step to image compression a bi-orthogonal wavelet transf
is applied on an input image. Each subband of wavelet c
ficients is divided up into blocks of samples, measuring
32 or 64 samples in each direction, except at image bo
aries where some blocks may have smaller dimensions.
ery block is coded completely independently using exa
the same algorithm in every subband. Let {Bi} i=1,2,… denote
the set of all blocks, which represent the image. For each b
Bi, a separate bit-stream is generated without utilizing
information from any of the other blocks. Moreover, the b
stream has the property that it can be truncated to a varie
discrete lengths,

 R R Ri i i
1 2 3, , , ,K and the distortion incurred whe

reconstructing from each of these truncated subsets is
mated and denoted by D D Di i i

1 2 3, , , .K Once the entire image ha
been compressed, a post-processing operation passes o
the compressed blocks and determines the extent to w
each block’s embedded bit-stream should be truncated i
der to achieve a particular target bit-rate. It then compo
the final compressed bit-stream by stringing the blocks
gether in any pre-defined order, together with information
identify the number of bytes, Ri

n , which are used to represe
each block. This basic idea is extended to the formatio
bit-streams in which the representation of each block is
tributed across multiple (perhaps as many as 50 or more
called “layers”.

The coder is essentially a bit-plane coder, using the s
Layered Zero Coding (LZC) techniques which have be
employed in a number of embedded Wavelet coders and
originally proposed by Taubman and ZakhorTaubman 1
#10}” {D. Taubman 1994} with the addition of fractional bi
plane coding and a simple embedded quad-tree algorith

 Rate-Distortion Optimization
The rate-distortion optimization algorithm itself need n

be defined in any compression standard, since the dec
need not be aware of its existence. In fact, the layers def
by the bit-stream syntax may be used to convey informa
about individual code blocks in any sequence at all an
arbitrary increments. Nevertheless, the fact that the co
algorithm and bit-stream syntax enable the generation of
distortion optimized bit-streams is an important elemen
the justification of the new coding algorithm. The number
code bytes included into the bit-stream is given by:
333
R R
i

i
ni= ∑

and we wish to find the set of ni (ni is the truncation point
for block Bi) values which minimizes the distortion D sub-
ject to the constraint R ≤ Rmax. The solution to this con-
strained optimization problem by the method of Lagran
multipliers is well known. Specifically, the problem i
equivalent to minimizing

R Di
n

i
n

i

i i+()∑ λ

where the value of λ must be adjusted until the rate yielde
by the truncation points which minimize the above equat
satisfies R = Rmax. In practice, we find that it is usually pos
sible to find values of λ, such that R is very close to Rmax

(almost always within 100 bytes), so that any residual s
optimality is of little concern. For each block, Bi, we must
find the truncation point, ni, which minimizes R Di

n
i
ni i+()λ this

is trivial as can be seen in Taubman 1998)” (D. Taubm
1998). Also the search for the optimal λ is extremely fast and
occupies a negligible proportion of the overall image co
pression time.

Block Packing
Each subband is partitioned into a set of blocks. All bloc

have the same size, say 32 × 32 or 64 × 64, with the possible
exception of blocks which lie on the image boundaries (
the boundaries of the array of samples from the relev
subband which represent the image). Apart from this exc
tion, the block size is also identical for all subbands, so th
blocks in lower resolution subbands span a larger region
the original image.

Different Subbands and Block Transposition
Let the unquantized sample values associated with

given code block be denoted by s[m,n], where m is the row
index and n is the column index. At any given resolution le
we have up to four different types of subbands, which we
note LL, LH, HL and HH. The LL band appears only in th
lowest resolution level and contains DC sample values. T
LH band corresponds to horizontal low-pass filtering and v
tical high-pass filtering. The HL band corresponds to verti
low-pass filtering and horizontal high-pass filtering. The H
band corresponds to high-pass filtering in both the horizon
and vertical directions. All code blocks from HL sub-bands a
transposed before applying the block-based coder, so that
HL and LH subbands can be encoded with the same algorithm.

s
t
m
f-
y
d-
v-
y

k,
y

-
 of

sti-

r all
ich
r-

es
-

o

of
s-
o-

e
n
re
4

.

t
er

ed
n
in
g

te-
n
f

d

e

s
r
=
 b

r

e

n

-
6
t
i

th

r

n
e
-
e

i

 t

n

e
 to
ifi-

hich
d as
de-
e im-
.

ra-
ber

ith-
 the

tate

o
ext
our

nd

wo-
les
-

on-
tify

t in
l is
y of

up
ent

nt
e of

e
e-
ood,
ni-
ent

ady

IS&T’s 1999 PICS Conference
Bit-Plane Coding and Dead-Zone Quantization
Let the quantization step size for the relevant subban

denoted by δ. Let χ[m,n] denote the sign of s[m,n] (0 if +ve
and 1 if -ve) and let v[m,n] denote the quantized magnitud
i.e., v[m,n] = [|s{ m,n]|/δ]. The representation of s[m,n] in terms
of χ[m,n] and v[m,n] is equivalent to dead-zone quantizatio
in which the central dead-zone is twice as large as the
size, δ. Let vp[m,n] denote the p’th bit in the P bit intege
representation of v[m,n], where p runs from 0 to P-1 and p
0 corresponds to the least significant bit. The idea behind
plane coding is to send first the most significant bits, vP-1[m,n],
for all samples in the code block, then the next most sign
cant bits and so on until all bit planes have been sent. In o
to efficiently encode vp[m,n], it is important to exploit previ-
ously encoded information about the current samp
s[m,n](from previous bit-planes), and neighboring sampl
We do this primarily by means of a binary-valued state va
able, σ[m,n], which is initialized to 0, but transitions to 1 whe
the relevant sample’s first non-zero bit-plane value, vp[m,n] ≠
0, is encoded. We refer to the state, σ[m,n], as the “signifi-
cance” of sample s[m,n].

Embedded Quad-Tree Front End
Each block, Bi, is partitioned into a number of sub

blocks,Bi
j ,whose maximum dimension, is typically set to 1

All sub-blocks have the same dimension, except those a
lower and right hand boundaries of the code block, wh
might have smaller dimensions. Thus, if the basic block s
is 64 × 64, all blocks will be partitioned into a 4 × 4 array of
16 × 16 sub-blocks, except those blocks, which lie on
lower and right-hand image boundaries.

The main reason for introducing the notion of sub-bloc
is to avoid running the zero coding algorithm on large
gions of zeros.

Types of Coding Operations
Four different coding operations are used to encode si

sample, s[m,n], for some bit-plane, p. If the sample is non y
significant, i.e. σ[m,n] = 0, a combination of the “Zero Cod
ing” (ZC) and “Run-Length Coding” (RLC) operations is us
to encode whether or not the symbol is significant in the c
rent bit-plane, i.e. whether or not vp[m,n] = 1. If so, the “Sign
Coding” (SC) operation must also be invoked to send the s
χ[m,n]. If the sample is already significant, i.e. σ[m,n] = 1,
the “Magnitude Refinement” operation is used to encode
new bit-position vp[m,n].

Figure 1. Neighbors involved in context formation for Zero Codi
33
 be

,

n
tep

it-

ifi-
der

le,
s.
ri-

.
the
ch
ize

e

ks
e-

gle
t

d
ur-

gn,

he

g

Zero Coding (ZC)

Upon entry, σ[m,n] = 0. The binary symbol, which must b
coded, is v

p
[m,n]. We use one of 10 different context states

code the value of this symbol, depending upon the sign
cance of the neighbors in Figure 1. Note that neighbors w
lie beyond the boundary of the code block are understoo
being insignificant when forming contexts so as to avoid
pendence between code blocks. No such assumptions ar
posed on neighbors that lie beyond the current sub-block

Run-Length Coding (RLC)

The RLC operation is used in conjunction with the ZC ope
tion described above, in order to reduce the average num
of binary symbols which must be encoded using the ar
metic coding engine. The operation is invoked in place of
ZC operation if and only if the following conditions hold:
1. Four consecutive samples must have a zero s

variable, i.e. σ[m,n] = 0.
2. All four samples must have identically zer

neighborhoods. That is, the ZC neighborhood cont
variables, h, v, d and f must be 0 for each of the f
consecutive samples.

3. All four samples must be horizontally adjacent a
reside within the same sub-block.

4. The group of four samples must be aligned on a t
sample boundary. That is, legal groups of four samp
must start at the 1st, 3rd, 5th ... sample of the relevant sub
block line.

When a group of four symbols satisfying the above c
ditions is encountered, a single symbol is encoded to iden
whether any sample in the group is becoming significan
the current bit-plane (1 if so; 0 otherwise). This symbo
coded using a single arithmetic coding context state. If an
the four symbols becomes significant, i.e. vp[m,n] = 1, the
zero-based index of the first significant sample in the gro
is sent as a two-bit quantity. The most significant bit is s
first, followed by the least significant bit.

Sign Coding (SC)

When a coefficient v[m,n] is first found to be significant the
state variable is toggled to σ[m,n] = 1 and the binary-valued
sign bit, χ[m,n], is encoded with respect to one of 5 differe
context states, depending upon the sign and significanc
the immediate vertical and horizontal neighbors.

Magnitude Refinement (MR)

Upon entry, σ[m,n] = 1. The binary symbol, which must b
coded, is v

p
[m,n]. We use a total of three magnitude refin

ment contexts, depending upon the sample’s neighborh
and whether or not this is the first bit-plane in which mag
tude refinement is being applied. At this point it is conveni
to define a second state variable,

(
σ[,]m n which identifies

whether or not the magnitude refinement operation has alre
4

n
 s
T

a

n
d
 b
n

io
a

oc

i
r

re
s
i

a

u
h
 n

a
e
a

t
a
h
n

tr

l-

n

a
is
 e
r
L

-
fi-

 its
or
 as

i-
r-
t it
it-

can-
ub-
ot-
ny

we
ate

n-

d-
it
 of
p-
i.e.
d

n-

he
ub-
all

 the
ion.
d”

bit

y
uct

IS&T’s 1999 PICS Conference
been applied to the sample in a previous bit-plane. This
state variable is initialized to zero and is set to 1 at the last
before the magnitude refinement operation completes.
magnitude refinement context depends upon the value

(
σ[,]m n and also upon whether or not any of the immedi
horizontal and vertical neighbors are significant.

Fractional Bit-Planes and Scanning Order
For each bit-plane, the coding proceeds in four disti

passes. Let p p pp p p
1 2 3, , and pp

4 denote the information encode
in each of these four different types of coding passes, for
plane p. Also, let Qp denote the quad-tree information e
coded in bit-plane p, where p runs from 0 to P-1.

Figure 2 uses this notation to illustrate the composit
and organization of the final embedded bit-stream gener
for any given code block.

Q P P P P Q P P PP p p p p p p p p− − − − − − − − − − − −1 1
4

2
1

2
2

2
3

2 2
4

3
1

3
2

Figure 2. Composition and organization of an embedded bl
bit-stream.

Notice that the quad-tree code, which identifies the s
nificant blocks for bit-plane p, appears immediately befo
the final coding pass for that bit-plane. But after the first th
coding passes for bit-plane p. Within any given coding pa
all sub-blocks, which have not yet been found to be sign
cant, are ignored. This means that coding pass pp

4 skips over
all sub-blocks which are insignificant in bit-plane p, where
coding passes p pp p

1 2, and pp
3 skip over all sub-blocks which are

insignificant in bit-plane p+1, even though some of those s
blocks might contain significant samples in bit-plane p. T
is because the quad-tree information for bit-plane p does
appear until after coding passes p pp p

1 2, and pp
3 . It can and in-

deed often does happen that one or more leading coding p
are empty, since no sub-blocks are significant at all. Th
empty coding passes consume no bits, since the bit-pl
pi

max in which each code block, Bi, first becomes significant is
identified via a separate mechanism in the bit-stream syn
We allow the bit-stream to be truncated at the end of e
coding pass, but never between the quad-tree coding p
and the following coding pass. To assist in the definition a
implementation of these coding passes, it is helpful to in
duce a final state variable, η[m,n], which is initialized to 0 at
the end of coding pass pp

4 and is set to 1 whenever the re
evant sample is visited in some coding pass.

“Forward Significance Propagation pass”,
During this pass we visit the sub-blocks in forward sca

line order (i.e. B B Bi i i
1 2 3, , ,K), skipping over all sub-blocks which

have not yet been found significant (as identified by the qu
tree code for bit-plane p+1). Within each sub-block we v
the samples in scan-line order, skipping over all samples
cept those which are insignificant and have a so-called “p
ferred neighbor-hood”. For blocks from the LL, LH and H
335
ew
tep
he
of

te

ct

it-
-

n
ted

k

g-
e
e
s,

fi-

s

b-
is
ot

sses
se
ne,

ax.
ch
ase
d

o-

-

d-
it
x-
e-

subbands, a sample, s[m,n], is said to have a preferred neigh
borhood if at least one of its horizontal neighbors is signi
cant. For blocks from the HH subband, a sample, s[m,n], is
said to have a preferred neighborhood if at least one of
diagonal neighbors is significant. Note that any neighb
which lies beyond the code block boundaries is interpreted
insignificant. To each sample, which is currently insignif
cant, i.e. σ[m,n] = 0, and has the relevant preferred neighbo
hood, we apply the ZC operation, to code whether or no
continues to be insignificant with respect to the current b
plane. If it becomes significant, i.e. vp[m,n], the SC operation
is also invoked, to code the sign bit.

“Backward Significance Propagation pass”, pp
2

This coding pass is identical to pp
1 except in three key

respects: 1) we pass through the sub-blocks in reverse s
line order and through the samples of each significant s
block in reverse scan-line order as well, starting from the b
tom right corner and ending at the top left; 2) we skip over a
samples, s[m,n], for which the “visited” state variable, η[m,n],
is set to 1; and 3) instead of a “preferred neighborhood”,
consider any sample for which at least one of the immedi
eight neighbors is significant.

“Magnitude Refinement Pass”, pp
3

During this pass we visit the sub-blocks in forward sca
line order, as in pp

1 skipping over all sub-blocks which have
not yet been found to be significant (as identified by the qua
tree code for bit-plane p+1). Within each sub-block we vis
samples in scan-line order, starting from the top left corner
the sub-block and finishing at the bottom right corner, ski
ping over all samples, except those which are significant,
σ[m,n] = 1, and for which no information has yet been code
in the current bit-plane, i.e. η[m,n] = 0. These samples are
processed with the MR operation described earlier on.

“Normalization Pass”, pp
4

During this pass we visit the sub-blocks in forward sca
line order, as in pp

1 and pp
3 skipping over all sub-blocks which

have not yet been found to be significant (as identified by t
quad-tree code for bit-plane p in this case). Within each s
block we visit samples in scan-line order, skipping over
samples, except those which are insignificant, i.e. σ[m,n] =
0, and for which no information has yet been coded, i.e. η[m,n]
= 0. These samples are processed with a combination of
ZC and RLC operations and, if necessary, the SC operat
At the end of this coding pass all samples have their “visite
state variable reset to η[m,n] = 0, in preparation for the first
coding pass of the next bit-plane.

Rich Bit-Stream Syntax
There are 6 different features we can assign to the

stream:

• RANDOM_ACCESS: it should be possible to independentl
decode a subset of the bit-stream in order to reconstr
smaller regions of the image.

ly
e
o
it
 i
o

e

e

ti

e
o

b
e
5
il

s
R

e
i
e

t
(
,
p

-
e
l

 a

e

g-

e.
er,
ge

ays
ig-
e

out-

m

ts
il-
ms

ion,
s

on

IS&T’s 1999 PICS Conference
• SNR_PROGRESSIVE: it should be possible to decode on
the first N bytes of the bit-stream, where N is a us
specified value over which the algorithm has no contr

• SNR_PARSABLE: it should be possible to parse the b
stream in order to extract an N byte subset, where N
user-specified value over which the algorithm has no c
trol.

• RESOLUTION_PROGRESSIVE: the bit-stream should be
organized so as to include all information relevant
lower resolution levels before information from high
resolution levels.

• RESOLUTION_PARSABLE: it should be possible to pars
the bit-stream in order to extract a subset which rep
sents a lower resolution image, for each of the resolu
levels offered by the wavelet transform.

• COMPONENT_PARSABLE: it should be possible to pars
the bit-stream in order to extract a subset, which c
tains a smaller number of components.

Bit-Stream Layers
To understand the structure of the remainder of the

stream, it is necessary to introduce the concept of a bit-str
layer. Typical bit-stream might have anywhere from 1 to
or more layers, depending upon the need for SNR scalab
The number of bit-stream layers corresponds to the num
of distinct bit-rates for which a rate-distortion optimal sub
of the original bit-stream is readily identifiable. If SN
scalability is not required, i.e. neither the SNR_PROGRESSIVE
nor the SNR_PARSABLE profile flags is required. Then a singl
layer suffices and this layer will generally contain a rate-d
tortion optimal subset of all code words which were gen
ated by block coding, optimized for some target bit-rate
distortion constraint.

Figure 3. Single layer bit-stream organization.

In general, we have Λ bit-stream layers, labeled λ =
1,2,…Λ. Every bit-stream layer is inherently scalable wi
respect to resolution and number of image components
color), because it is composed of a separate componentCl c

λ
,

for each resolution level, l=1,2,...,L and each image com
nent, c. Resolution level l=1 corresponds to the lowest re
lution level in the Wavelet transform; it contains the LL ban
in addition to the usual LH, HL and HH bands. Each lay
component, Cl c

λ
, commences with a “tag-block”, which is fol

lowed immediately by the code bytes associated with ev
code block represented by the layer component. The tag-b
starts on a byte boundary and is padded to an integral num
of bytes, if necessary. The tag-block identifies the code blocks
from each subband in the relevant resolution level which
included in the layer component. It also identifies the trunca-
tion points for each included code-block, from which the d
coder can determine the set of coding passes for which in
33
r-
l.
-
s a
n-

to
r

re-
on

n-

it-
am
0
ity.
ber
et

s-
r-
or

h
i.e.

o-
so-
d,
er

ry
ock
ber

re

-
for-

mation is available. Other information represented by the ta
block includes the number of code bytes which are being sent
for each included code block and the maximum bit-depth, pi

max

for each code block which is being included for the first tim
We begin by considering a bit-stream with only a single lay
which represents a monochrome image (i.e. only one ima
component, c=1). In this case, the layer components alw
appear in order of increasing resolution, as illustrated in F
ure 3. In this way, the bit-stream will possess th
RANDOM_ACCESS, RESOLUTION_PARSABLE and
RESOLUTION_PROGRESSIVE features. In fact, all bit-
streams constructed using the layered component syntax
lined here will possess the RANDOM_ACCESS and
RESOLUTION_PARSABLE features, at a minimum.

Figure 4. Multi-layer RESOLUTION_PROGRESSIVE bit-strea
organization

We define two different organizations for the com-ponen
of these different bit-stream layers. The first organization,
lustrated in Figure 4, is suitable for gener-ating bit-strea
with the RESOLUTION_PROGRESSIVE feature; of course, such
a bit-stream is also SNR scal-able. The second organizat
illustrated in Figure 5, is suitable for generating bit-stream
with the SNR_PRO-GRESSIVE feature.

Figure 5. Multi-layer SNR_PROGRESSIVE bit-stream organizati
6

e
p

i

l
tr
c
o
t
W
e
iv

r
a
h

r

g

o

iv

t

8
o
ti
;

m
t

a

-
t

c

ich
 ad-
n-
ach
te-
tes
.

ffi-
k is
or-
ities,
ent
 is
lu-
ys,
ded
ed

e
m

yer,

ot

g-

e,

ag-
ent
t-

ch

ke
it-
ew

{D.

e-
o-

,

 is

IS&T’s 1999 PICS Conference
Tag Trees
Before we can discuss the organization of the tag blo

mentioned above, it is important to introduce the concep
what we call a “tag tree”. This is a particular type of tr
structure, which provides the framework for efficiently re
resenting tag block information, which exhibits significa
redundancy between the different blocks of a subband,
between different bit-stream layers. We will use the same
tree structure for representing different types of informat
within tag blocks. There are two key differences between
trees and conventional quad-tree coding schemes. Firstly
values associated with each node need not be binary-va
Secondly, and most importantly, the information in a tag
may be coded in any order. In particular, the coding pro
for a tag tree is driven from the leaves rather than the ro

Let q1[m,n] denote a two-dimensional array of quan
ties, which we would like to represent via the tag tree.
associate these quantities with the leaf nodes of the tre
practice, we will have one node for each code block in a g
subband, so that the two-dimensional array, q1[m,n], corre-
sponds to the array of code blocks which partition the
evant subband. The values themselves are all non-neg
integers. Let q2[m,n] denote the nodes at the next level of t
quad-tree structure. Each of these nodes is associated w
2x2 block of leaf nodes, except at the boundaries of the o
nal array. We continue in this fashion, defining smaller a
smaller arrays, q3[m,n], q4[m,n] ..., at higher levels in the ta
tree until we reach the root level, which consists of a sin
node, qK[0,0]. The quantity associated with each non-leaf n
is the minimum of all descendant nodes.

Each node in the tag tree maintains a separate state
able, which we shall denote tk[m,n], whose interpretation is
that sufficient information has already been encoded to id
tify whether or not qk[m,n] ≥ tk[m,n]. This state variable is
initialized to zero for all nodes, before any information
coded. As mentioned, the tag tree coding algorithm is dr
from the leaves. The algorithm may be summed up as a
cedure, T(m,n,t), where m and n identify the row and colum
indices of the leaf node for which information is reques
and t identifies a threshold. The procedure sends the s
cient information to identify whether or not q1[m,n] ≥ t. De-
tails of the algorithm can be found in {D. Taubman 199
The intuitive idea behind it is as follows: we start at the r
node sending the minimal amount of information to iden
whether or not qK[0,0] ≥ t. If this fact is not already known
we then move down the tree toward the leaf node which
are interested in. Updating the node to reflect any infor
tion which can be deduced from what is known about
parent (i.e. the value must be no smaller than tmin) and repeat-
ing the process for that node. This procedure, T(m,n,t), may
be invoked many times in constructing the tag block for
particular bit-stream layer component.

Anatomy of a Layer Component
Recall that the layer component Cl c

λ
, represents new in

formation from the code blocks of the subbands in resolu
level l, from image component c, which is being introduced
bit-stream layer λ. The component commences with a tag-blo
33
cks
t of
e
-

nt
and
 tag
on
tag
, the
ued.
ee
ess
t.
i-

e
. In
en

el-
tive
e
ith a
igi-
nd

gle
de

vari-

en-

is
en

pro-
n
ed
uffi-

}.
ot
fy

we
a-
he

ny

ion
 in
k,

which consists of a sequence of code bits identifying wh
code blocks are included from each subband, along with
ditional information concerning the maximum bit-depth, tru
cation point, and number of code bytes being sent for e
included code block. The tag-block is padded out to an in
gral number of bytes and followed immediately by the code by
themselves, for each block included in the layer component

Inclusion Information
We utilize a separate tag tree for each subband, to e

ciently represent the bit-stream layer in which a code bloc
included for the first time. The leaf nodes of the tag tree c
respond to the code blocks in the subband and the quant
q1[m,n], associated with each of these leaf nodes repres
the index of the bit-stream layer in which the code block
first included, minus 1. For any given code block, the inc
sion information is represented in one of two different wa
depending upon whether or not the block has been inclu
in a previous bit-stream layer. If it has already been includ
in a previous layer, i.e. λ[m,n] < λ, we simply send a single
bit to identify whether or not any new information for th
code block is included in the current layer. If the bit-strea
has not yet been included in any previous bit-stream la
we invoke the tag tree coding procedure T(m,n,λ). This op-
eration emits any bits required to identify whether or n
q1[m,n] ≥ λ, i.e. whether or not λ[m,n] > λ, which is exactly
the information required.

Maximum Bit-Depth Information
For each code block, B[m,n], which is included in the

bit-stream for the first time, we must identify the most si
nificant bit-plane, pmax[m,n], with respect to which any sample
in the code block is significant. Now the maximum valu
which can be assumed by, pmax[m,n] is P – 1 where P is the
number of bits used to represent the relevant quantized m
nitudes. We utilize a second tag tree to efficiently repres
pmax[m,n] via the number of missing most significant bi
planes, i.e. P – 1 – pmax[m,n].

Truncation Point Information
For every code block, Bi, which is to be included in the

bit-stream, we must identify the new truncation point whi
applies to the code block’s bit-stream. Let ni

min denote the
minimum value, which this new truncation points, can ta
on. For each code block which is to be included in the b
stream, we must then identify the difference between the n
truncation point and its minimum value, i.e. n ni i− min , which
must lie in the range 0 ≤ −n ni i

min < 4(P–1). We send this differ-
ence by means of a simple variable length code, see
Taubman 1998} for details.

Code Size Information
We need to identify the number of bytes, which are b

ing sent for each code block included in the layer comp
nent. The number of bytes, which must be sent for blockBi

is ∆R R Ri i
n

i
ni i= − −min

,1 where ni
min is defined above and n ni i− +min 1

is the number of new coding passes for which information
being included. The number of bits used to represent ∆Ri is βi
7

-
e
 i d

IS&T’s 1999 PICS Conference
= βλ + [log2 ()minn ni i− +1], where βλ is determined at the begin
ning of the pass so as to be large enough to represent th∆Ri

values for all code blocks from the subband which are
cluded in the layer.
o.

338

n-

References

1. D. Taubman. EBCOT (Embedded Block Coding with Optimize
Truncation). ISO/IEC JTC 1/SC 29/WG1. 1998 Oct 21.

2. D. Taubman, A. Zakhor. Multirate 3-D Subband Coding of Vide
IEEE Transactions on Image Processing. 1994 Sep; 3(5):572-
588.

